82 research outputs found

    An inefficient dwarf: Chemical abundances and the evolution of the Ursa Minor dwarf spheroidal galaxy

    Full text link
    We present detailed chemical element abundance ratios of 17 elements in three metal poor stars in the Ursa Minor dwarf spheroidal galaxy, which we combine with extant data from the literature to assess the predictions of a novel suite of galaxy chemical evolution models. The spectroscopic data were obtained with the Keck/HIRES instrument and revealed low metallicities of [Fe/H]=-2.12, -2.13 and -2.67 dex. While the most metal poor star in our sample shows an overabundance of [Mn/Fe] and other Fe-peak elements, our overall findings are in agreement with previous studies of this galaxy: elevated values of the [alpha/Fe] ratios that are similar to, or only slightly lower than, the halo values but with SN Ia enrichment at very low metallicity, as well as an enhancement of the ratio of first to second peak neutron capture elements [Y/Ba] with decreasing metallicity. The chemical evolution models which were tailored to reproduce the metallicity distribution function of the dSph, indicate that UMi had an extended star formation which lasted nearly 5 Gyr with low efficiency and are able to explain the [Y/Ba] enhancement at low metallicity for the first time. In particular, we show that the present day lack of gas is probably due to continuous loss of gas from the system, which we model as winds.Comment: 10 pages, 7 figures, table

    The tidal stripping of satellites

    Full text link
    We present an improved analytic calculation for the tidal radius of satellites and test our results against N-body simulations. The tidal radius in general depends upon four factors: the potential of the host galaxy, the potential of the satellite, the orbit of the satellite and {\it the orbit of the star within the satellite}. We demonstrate that this last point is critical and suggest using {\it three tidal radii} to cover the range of orbits of stars within the satellite. In this way we show explicitly that prograde star orbits will be more easily stripped than radial orbits; while radial orbits are more easily stripped than retrograde ones. This result has previously been established by several authors numerically, but can now be understood analytically. For point mass, power-law (which includes the isothermal sphere), and a restricted class of split power law potentials our solution is fully analytic. For more general potentials, we provide an equation which may be rapidly solved numerically. Over short times (\simlt 1-2 Gyrs 1\sim 1 satellite orbit), we find excellent agreement between our analytic and numerical models. Over longer times, star orbits within the satellite are transformed by the tidal field of the host galaxy. In a Hubble time, this causes a convergence of the three limiting tidal radii towards the prograde stripping radius. Beyond the prograde stripping radius, the velocity dispersion will be tangentially anisotropic.Comment: 10 pages, 5 figures. Final version accepted for publication in MNRAS. Some new fully analytic tidal radii have been added for power law density profiles (including the isothermal sphere) and some split power law

    The mass of dwarf spheroidal galaxies and the missing satellite problem

    Full text link
    We present the results from a suite of N-body simulations of the tidal stripping of two-component dwarf galaxies comprising some stars and dark matter. We show that recent kinematic data from the local group dwarf spheroidal (dSph) galaxies suggests that dSph galaxies must be sufficiently massive (109101010^9 - 10^{10}M_\odot) that tidal stripping is of little importance for the stars. We discuss the implications of these massive dSph galaxies for cosmology and galaxy formation.Comment: 4 pages, 1 figure, to appear in the proceedings of the IAUC198 "Near-Field Cosmology with Dwarf Elliptical Galaxies", H. Jerjen & B. Binggeli (eds.). Comments welcom

    A Survey for Outer Satellites of Mars: Limits to Completeness

    Full text link
    We surveyed the Hill sphere of Mars for irregular satellites. Our search covered nearly the entire Hill Sphere, but scattered light from Mars excluded the inner few arcminutes where the satellites Phobos and Deimos reside. No new satellites were found to an apparent limiting red magnitude of 23.5, which corresponds to radii of about 0.09 km using an albedo of 0.07.Comment: 5 figures (1 color), 2 Tables, to appear in AJ Nov. 200

    Kinematically Cold Populations at Large Radii in the Draco and Ursa Minor Dwarf Spheroidals

    Full text link
    We present projected velocity dispersion profiles for the Draco and Ursa Minor (UMi) dwarf spheroidal galaxies based on 207 and 162 discrete stellar velocities, respectively. Both profiles show a sharp decline in the velocity dispersion outside ~30 arcmin (Draco) and ~40 arcmin (UMi). New, deep photometry of Draco reveals a break in the light profile at ~25 arcmin. These data imply the existence of a kinematically cold population in the outer parts of both galaxies. Possible explanations of both the photometric and kinematic data in terms of both equilibrium and non-equilibrium models are discussed in detail. We conclude that these data challenge the picture of dSphs as simple, isolated stellar systems.Comment: 5 pages, accepted for publication in ApJ Letter

    Transient Fragments in Outbursting Comet 17P/Holmes

    Full text link
    We present results from a wide-field imaging campaign at the Canada-France-Hawaii Telescope to study the spectacular outburst of comet 17P/Holmes in late 2007. Using image-processing techniques we probe inside the spherical dust coma and find sixteen fragments having both spatial distribution and kinematics consistent with isotropic ejection from the nucleus. Photometry of the fragments is inconsistent with scattering from monolithic, inert bodies. Instead, each detected fragment appears to be an active cometesimal producing its own dust coma. By scaling from the coma of the primary nucleus of 17P/Holmes, assumed to be 1.7 km in radius, we infer that the sixteen fragments have maximum effective radii between ~ 10 m and ~ 100 m on UT 2007 Nov. 6. The fragments subsequently fade at a common rate of ~ 0.2 mag/day, consistent with steady depletion of ices from these bodies in the heat of the Sun. Our characterization of the fragments supports the hypothesis that a large piece of material broke away from the nucleus and crumbled, expelling smaller, icy shards into the larger dust coma around the nucleus.Comment: 41 pages, 12 figures. Accepted for publication by the Astronomical Journal

    A Dynamical Fossil in the Ursa Minor Dwarf Spheroidal Galaxy

    Full text link
    The nearby Ursa Minor dwarf spheroidal (UMi dSph) is one of the most dark matter dominated galaxies known, with a central mass to light ratio roughly equal to 70. Somewhat anomalously, it appears to contain morphological substructure in the form of a second peak in the stellar number density. It is often argued that this substructure must be transient because it could not survive for the > 10 Gyr age of the system, given the crossing time implied by UMi's 8.8 km/s internal velocity dispersion. In this paper, however, we present evidence that the substructure has a cold kinematical signature, and argue that UMi's clumpiness could indeed be a primordial artefact. Using numerical simulations, we demonstrate that substructure is incompatible with the cusped dark matter haloes predicted by the prevailing Cold Dark Matter (CDM) paradigm, but is consistent with an unbound stellar cluster sloshing back and forth within the nearly harmonic potential of a cored dark matter halo. Thus CDM appears to disagree with observation at the least massive, most dark matter dominated end of the galaxy mass spectrum.Comment: Astrophysical Journal (Letters), in pres

    First Clear Signature of an Extended Dark Matter Halo in the Draco Dwarf Spheroidal

    Full text link
    We present the first clear evidence for an extended dark matter halo in the Draco dwarf spheroidal galaxy based on a sample of new radial velocities for 159 giant stars out to large projected radii. Using a two parameter family of halo models spanning a range of density profiles and velocity anisotropies, we are able to rule out (at about the 2.5 sigma confidence level) haloes in which mass follows light. The data strongly favor models in which the dark matter is significantly more extended than the visible dwarf. However, haloes with harmonic cores larger than the light distribution are also excluded. When combined with existing measurements of the proper motion of Draco, our data strongly suggest that Draco has not been tidally truncated within ~1 kpc. We also show that the rising velocity dispersion at large radii represents a serious problem for modified gravity (MOND).Comment: to be published in ApJL; 5 pages, 4 figure
    corecore